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Analysis and Measurement of Transducer
End Radiation in SAW Filters on
Strongly Coupling Substrates

ALI R. BAGHAI-WADIJL, MEMBER, IEEE, OSWALD MANNER, MEMBER, IEEE,
AND RUDI GANB-PUCHSTEIN

Abstract —We present the analysis and measurement of spurious re-
sponses generated at the ends of surface acoustic wave (SAW) interdigital
transducers (IDT’s). Filters fabricated on LiNbO; show an unwanted
passband ripple whose period indicates additional generation of acoustic
waves at the IDT end. As this effect cannot be explained by methods of
analysis based on the infinite array approximation, an exact analysis of the
complex-valued, frequency-dependent electric charge distribution on the
finite IDT structure is required.

Utilizing the method of moments, our analysis is based on a Green’s
function concept and a spectral-domain representation. Three effects are
shown: The first is the charge accumulation of grounded guard fingers
located closely to the IDT end, resulting in unwanted end radiation. The
second is acoustic end reflections in split-finger IDT’s, occurring at the
transition from the periodic finger structure to the free substrate. The third
is the finger charge induced by the metallic ground plane when the
transducer is driven unbalanced to ground. Computer simulations based on
our method agree well with measurements.

1. INTRODUCTION

ASICALLY a SAW filter consists of launching and

receiving IDT’s. These are comblike thin metallic
strips (fingers) deposited on the plane surface of a piezo-
electric substrate. The general features of SAW propaga-
tion and SAW interaction with IDT fingers are now well
understood. Nevertheless, to fulfill the stringent require-
ments for SAW filters employed in modern telecommuni-
cation equipment, it is necessary to understand the mecha-
nisms of the various second-order effects [1], [2], which
cause considerable discrepancy between first-order theory
and experimental data. As a next step these effects are to
be incorporated into the design models and are to be
corrected by an iterative design procedure. Among others,
the following are the predominant second-order effects:
mechanical and electrical reflections in IDT’s [3], energy
storage effects on SAW propagation in periodic arrays [4],
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influence of external matching on phase and amplitude
response, transducer end effects and neighbor coupling
effects [5], [6], transversal end effects in SAW IDT’s [7],
[8], coupling to electromagnetic waves and acoustic bulk
waves [9]-[13], losses due to the finite resistivity of the
fingers [14], [15], surface wave diffraction and beam steer-
ing [16], the waveguiding effect in SAW-IDT’s, and losses
due to surface roughness of the piezoelectric substrate.
Some of these effects are still subjects of active research.

The present paper for the first time discusses three
second-order effects, which can be observed if a SAW IDT
with a finite number of fingers is deposited on the surface
of a piezoelectric substrate with a metallized grounded
back plane.

The SAW filter substrate must be neither too thin
(fragile) nor too thick because this leads to excessive
electromagnetic feedthrough and economically is unsound
(typical wafer thickness, 500 pm). To suppress electromag-
netic cross talk between the input and output IDT, a SAW
filter is usually mounted in a shielding metal casing. Con-
ductive (silver loaded) adhesives are often used to coat the
backside of the crystal substrate and to mount it in its
housing. Due to the finite dimension of the substrate the
time-domain response of the device depends on the IDT
driving arrangement (upper or lower pad driven with re-
spect to ground, Figs. 3 and 4).

Filters fabricated on LiNbO, show an unwanted pass-
band ripple whose period indicates additional generation
of acoustic waves at the IDT end. As this effect cannot be
explained by methods of analysis based on the infinite
array approximation [17], an exact analysis of the com-
plex-valued, frequency-dependent clectric charge distribu-
tion on the finite IDT structure is required [18]-[20]. The
latter can be regarded as the distributed source of the
excitation of acoustic waves due to the corresponding
Coulomb forces in the piezoelectric crystals [21].

In the following, based on a Green’s function concept
{9], [25] (for a theoretical treatment see, for example,
[22}-{24]), a spectral-domain representation [26]-[28], and
the method of moments (MoM) [29]-[31], an efficient
formalism [6], [8], [19], [32]-[34] for the calculation of the
spatial charge density distribution will be presented.

0018-9480,/89,/0100-0150$01.00 ©1989 IEEE



'BAGHAI-WADJI et al.: TRANSDUCER END RADIATION IN SAW FILTERS

In treating linear boundary value problems, as is well
known, the primary task is the construction of a Green’s
function, which is the response of the medium under
consideration to a Dirac § excitation (line-, point-source
excitation). Generally, the construction of Green’s func-
tion is a difficult procedure. Using spectral-domain repre-
sentation, the determination of Green’s function in the
wavenumber domain can be simplified considerably. In
this way the governing system of linear differential equa-
tions in conjunction with the imposed boundary conditions
is transformed into a linear system of algebraic equations.
A simple elimination procedure reveals a relation between
the spectral components of the source and the response
functions. From the latter, by inspection, Green’s function
in the wavenumber domain can be found.

In the wavenumber domain many interesting facts can
be deduced from the functional behavior of Green’s func-
tion. As we will demonstrate below, Green’s function will
or will not have a pole singularity at the origin, depending
on whether or not the line charge source, which excites the
medium, is isolated. (If at a finite distance from an as-
sumed line charge source a grounded, unbounded metallic
body does not exist, the line source may be called isolated.
Otherwise it is a nonisolated one.) Simple pole singularity,
say at k= k,, represents a surface wave, while a branch
point singularity at k =k, characterizes a volume wave
(bulk wave excitation is not treated in this paper).

However, a problem arises: the resulting Green’s func-
tion in the wavenumber domain must be transformed into
the real space. This is a difficult procedure, which inher-
ently is accompanied by integral transform techniques.
From a computational point of view, it is more efficient in
some cases to perform the inverse Fourier transform of the
product of Green’s function in the wavenumber domain
and Fourier transform of the source distribution, which
excites the medium. The advantages of this technique will
be extensively discussed in Section II.

As we will discuss below, the Green’s function con-
structed for our boundary value problem consists of two
parts, a purely electrostatic part and a second part, which
describes the SAW propagation on the surface of a semi-
infinite anisotropic piezoelectric substrate. In the wave-
number domain both components are given in closed form.
In the real space, the SAW part can be derived analyti-
cally, while for the electrostatic part, in its general form,
there is no closed-form representation. However, in the
special case where the permittivity of the substrate mate-
rial is much higher than that of free space, the electrostatic
component can also be derived analytically.

The constructed Green’s function is a good approxima-
tion if the predominant acoustic wave is a Rayleigh wave.
Nevertheless, the method discussed here is not restricted to
Rayleigh wave excitation problems only. A proper exten-
sion of Green’s function discussed here allows the calcula-
tion of IDT interaction with both surface and bulk acous-
tic waves {12], [13]. Moreover, employing the same method
of analysis, the diffraction problem of acoustic waves
excited by arbitrary finite structures on piezoelectric media
can be analyzed efficiently [12], [13].
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In what follows, first, using Green’s function in the
spectral domain and the inverse Fourier transform, an
integral relation for the potential distribution on the sur-
face of the substrate is established. Then, employing the
MoM, the associated integral representation is reduced to
a matrix equation. In this way the SAW components of the
elements of the involved matrix are evaluated analytically.
The solution of the resulting linear system of equations
yields an approximation for the charge distribution. From
the latter all the relevant characteristics of the SAW IDT
can be derived in analytical form. A fairly simple modifi-
cation of the aforementioned matrix makes it possible to
include in the analysis the single and interconnected float-
ing fingers with arbitrary geometrical complexity [6], [32].
It must be emphasized that, from a computational point of
view, the main advantage of the present method is the
possibility of deriving nearly all of the occurring formulas
in closed form, so that the time-consuming numerical
evaluation of the Fourier transform is avoided.

This paper is organized as follows. In Section II the
basic relations are established and the proposed solution
procedure is outlined. Section III deals with a discussion
of the Green’s function for our boundary value problem.
In Section IV, based on a nonequidistant discretization of
the fingers, a step function approximation of the charge
density distribution on the fingers is formulated. In section
V the MoM is applied to our problem. A simple expression
for the input power of a SAW IDT is derived in Section
VI

In Section VII simulation results based on our theory
are compared with experimental data. Three effects will be
discussed. The first is the charge accumulation on grounded
guard fingers located close to the IDT end, resulting in
unwanted end radiation. The second is acoustic end reflec-
tions in split-finger IDT’s, occurring at the transition from
the periodic finger structure to the free substrate. The third
is the finger charge induced by a metallic grounded back
plane when the transducer is driven unbalanced to ground.

Several SAW filters consisting of unapodized split-finger
IDT’s with varying numbers of guard fingers have been
fabricated. The frequency response has been measured and
transformed into the time domain, where the different
effects of interest can be observed separately. The calcu-
lated time response of the devices is in good agreement
with measurements.

II. THEORY

Assume N, infinitely thin metallic fingers with ideal
conductivity deposited in parallel fashion on the plane
surface of a piezoelectric substrate of finite thickness D.
The finger geometry and the finger potentials may be
arbitrary. The back side of the substrate may be metallized
and grounded (Fig. 1). The problem is to find an efficient
method for the analysis of the frequency-dependent spatial
charge density distribution. Once the charge distribution
on the fingers has been calculated, all the relevant IDT
parameters, such as the total capacitance, the input admit-
tance, and, consequently, the insertion loss, can be uniquely
determined [9]-[13].
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SAW IDT on the surface of a piezoelectric substrate of finite
thickness with grounded back plane.

Fig. 1.

The linearity of the boundary value problem sketched in
Fig. 1 implies the validity of the superposition principle.
Equivalent to the latter property is the fact that the poten-
tial on the surface of the substrate, ®(x), can be written as
a convolution integral:

+ o0
®(x) =/ G(x'— x)p(x") dx’ (1)

— o0
where p(x) is the spatial charge density distribution and
G(x) is the Green’s function characterizing the boundary
value problem shown in Fig. 1. By definition, G(x) is the
potential distribution on the surface of the substrate if an
infinitely long line charge source in the y direction located
at x = 0 excites the medium. A time dependence according
to e/*" is assumed. As will be discussed below, for the
problem sketched in Fig. 1 the Green’s function and
consequently the charge distribution depend on the angu-
lar frequency w. Keeping in mind that for each frequency
value the charge distribution must be evaluated individu-
ally, in (1) the variable « has been omitted.

Remark

Actually, in the above boundary value problem, the
potential response of the medium to a line charge source
is a two-dimensional function, G(x,z). Now, what is
the reason for referring to G(x) with the property
lim,_, ,G(x,z)=G(x) as the Green’s function? This is
due to the fact that the distributed source, which controls
the electric potential (electric field) distribution, is located
on the fingers, which reside in the interface and possess
given potential values. Therefore we have to construct an
expression for the potential distribution on the surface and
match (relate) it to the given potential values of the fin-
gers, if the variable x passes the finger regions. Conse-
quently, for the problem treated here, only the electrical
conditions on the surface of the substrate must be under-
stood.

Following the ideas of Milsom et al. [9] (they considered
a line charge source excitation of a semi-infinite piezoelec-
tric substrate) and disregarding the excitation of bulk
acoustic waves, G(x) can be decomposed into two parts:

G(x) =G*(x)+GAV(x). (2)
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G*(x) and GSAW(x) are, respectively, the electrostatic and
the SAW component of Green’s function. Insertion of (2)
into (1) yields

®(x) =00 (x)+ 0 (x) (3)

with

20(x) = [ o -xpx) (@)

and

DO(x) = fj:GSAW(x’—x)p(x') . (5)

An equivalent formula for ®®(x) is
1 ,+e0_
00(x) == [ G(k)B(k,) e dk,.  (6)
27 J_ ;

(Convolution in configuration space corresponds to multi-
plication in the wavenumber space [35].) The bar indicates
Fourier transform.

For the following reason we will use (6) instead of (4)
for ®®(x). Equation (4) demands the determination of
the Green’s function in real space. Apart from some simple
cases, generally it is not possible to transform the Green’s
function from the wavenumber domain into real space in
closed form. The associated Fourier integrals must be
evaluated numerically. Calculating these oscillating inte-
grals, the behavior of G¢(k,) for large and small values of
k., will be of importance. As will be shown in the next
section for k> 1, we have G*(k,) ~1/k, (~ symbolizes
asymptotically equal to). Now, if we use a step function
approximation for the charge density distribution on the
fingers we obtain |p(k,)|~1/k,. Thus for k,>1 the
relation G°(k,)|p(k,)|~1/k? is valid. Using a triangle
function approximation for the charge density distribution
we have G°(k,)|p(k,)|~1/k2. Therefore, comparing
Fourier integral representations

+o0
G(x) =127 [ "Gk, )e " dk,
-0
and
+oo
oD(x) =1/27rf G(k)p(k,)e > dk,

for Green’s function and for the potential distribution on
the surface, respectively, the following can be concluded:
For k.>1 the integral expression for ®U(x) shows a
better convergence behavior than the integral representing
G(x). Further, for problems where G¢(k,) is singular at
k,=0, we have p(0)=1lim, _, [f%p(x)e/ ™ dx =

T 2p(x)dx =0, which is the condition for charge conser-
vation. Therefore, G°(k,)p(k,) in (6) is regular at k =0.
(In cases where G°(k,) is regular at k, =0 there is no
difficulty at all.) From these we conclude that the inte-
grand in (6) is always a well-behaved function for both
k,<1land £, >1.

With regard to (3), (5), and (6), and following the
concept described in [6], [8], [12], [13], [18], [19], and
[32]-[34], the following solution procedure can be outlined.
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Solution Procedure

1) Derive the expression for G(k ).

ii)  Construct an expression for GSA%(k ).

Determine the inverse Fourier transform of

GSAW( kx)

Discretize the fingers (nonequidistantly) in N,

strips.

Using suitable basis functions, construct a sum

approximation for p(x) and from that a sum

approximation for p(k,).

Insert G°(k,) and the approximation for p(k,) in

(6), interchange the order of summation and inte-

gration, and evaluate (numerically) the involved

integrals. The resulting expression is an approxi-

mation for ®®V(x).

Insert G3A%(x) and the approximation for p(x)

in (5), interchange the order of summation and

integration, and evaluate the involved integrals (in

closed form). The resulting expression is an ap-

proximation for ®®(x).

Equation (3) together with (5) and (6) yields an

approximation for ®(x), the potential distribu-

tion on the surface of the substrate.

Choose appropriate weighting functions.

x)  Define an inner product for two complex-valued
functions.

vii)

equations for N, unknown charge values on the N,
strips.

In what follows, for G(k,) and G5A%(x), respectively,
we will use our previously published results [33] and the
approximation given by Milsom et al. [9].

I1IL.

In the preceding section the results of the Green’s func-
tion concept were presented in a general form. Attention is
now turned to an approximation to the general theory.
Here we will discuss the expressions for the aforemen-
tioned two components of the Green’s function. First, we
will discuss the properties of the electrostatic component
of the Green’s function in the wavenumber domain and
then the SAW component of the Green’s function both in
the wavenumber domain and in the configuration space.

GREEN’s FuNcTION

A. Electrostatic Component of Green’s Function
In [33] we have shown that G°(k,) has the functional
form

_ 1
G*(k,) =

(7)
€
<ol 1+e,,_,coth(i’—pikx|)

33,r

with

_/ _ 2
€p,r = V€11,£33,» — €13,,>

where ¢, is the effective relative permittivity constant for
the anisotropic substrate in Fig. 1. D is the thickness of

Apply MoM to ®(x). This leads to a system of N,
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the substrate. G°(k,) is an overall regular function, with
the following properties:

1) The first concerns the behavior of G°(k,) in the limit
D — co. In this limit the line charge source on the substrate
surface is no longer shielded by a grounded plane at a
finite distance. The line source becomes isolated. In this
case for a SAW IDT on the surface, the charge neutrality
condition must be met; i.e., (p(0) =)/ F%p(x) dx = 0. De-
noting Green’s function for the semi-infinite substrate by
G:(k,) and introducing the parameter o, =1/¢;-
(1+e¢p,,), then from (7) we have
a,

éi(kx) = |k |'

(8)

As is known, the expression on the right-hand side is the
Green’s function for a semi-infinite anisotropic substrate,
with the characteristic pole singularity at k,=0. In real
space, if we interpret the inverse Fourier integral of (8) in
Cauchy’s sense, we obtain

a,

ae
Go(x)=——v-

©)

where y is Euler’s constant. Inserting (9) into (4), with
regard to the charge neutrality condition, get

. &,
lim Ine — — In|x|
T €—0 m

a + o0
o (x)==—[ “lx'~xlp(x)dx’.  (10)
T Y-

Note that the pole singularity in G¢(k,) results in the
divergent term lim__, ,Ine, which only in connection with
the charge conservation condition leads to a physically
meaningful expression for @ (x).

2) The second property concerns the behavior of G(k,)
in the limit k, - 0: lim, _,G°(k,)=D/(¢3;, ) = const.
In contrast to Green’s function of the semi-infinite sub-
strate, (eq. (8)), G°(k,) is regular at k= 0. This is because
the line charge source, which excites the medium, is
shielded by the grounded plate (nonisolated line charge
source).

3) For the special case where the permittivity of the
substrate material is much higher than that of free space
(ep,,>1) we find the following approximate formula for
G(k,): ‘
—}— —1— tanh ( <p.r
€ 1+eP,,|kx| €

G(k,) = Dikx|). (11)

33,r

The inverse Fourier transform of (11) can be carried out
analytically [36], yielding

1
G (x) = —

ey 1+ €p ,

B. SAW Part of Green’s Function

Up to this point we have entirely neglected the piezo-
electric property of the substrate. To include this effect, we
use an approximation for the SAW component of the
Green’s function discussed by Milsom et al. [9]. This
approximation will be based on the assumption that the
predominant surface acoustic wave is a Rayleigh wave. In
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addition, we shall assume that the bulk acoustic waves are
not excited. Therefore, while for the electrostatic part of
the Green’s function we have taken into account the finite
thickness of the substrate, constructing the SAW part we
may assume that the piezoelectric substrate is a semi-
infinite medium. The validity of this approach for the
frequency range of interest is established by comparing
calculated results with experimental data (Section VII).

Milsom et al. [9] have shown that, for a semi-infinite
piezoelectric substrate, the SAW part of the Green’s func-
tion GSA¥(k ) can be written as

2k0Gs
ki=kg

(k) = (13)

G, is a piezoelectric coupling factor and k, is the
wavenumber at the free surface of the substrate for a
Rayleigh wave propagating with velocity v, at frequency
. An expression analogous to (13) can be obtained di-
rectly if the propagation of a disturbance caused by a
Dirac & force on a infinitely long string with uniform mass
density is considered.

Using (13) and applying Cauchy’s residue theorem,
Milsom et al. have shown that the resulting Green’s func-
tion for a line charge source located at x =0 is

GSAW(X) - ste*]ko[ﬂ

(14)
(remember a time dependence according to e/“’ has been
assumed). Taking the magnitude of x in the exponential
term ensures the propagation of outgoing waves only. The
negative sign in the exponent is due to the positive sign in
the exponent of e’/*’. As k, is proportional to w, G3A%¥(x)
depends on frequency.

IV. APPROXIMATION OF THE CHARGE DENSITY

Assume that the fingers have already been discretized
into N, strips. (To emphasize the logarithmic singularity of
the electrostatic part of the charge density at finger edge
points, the strips at the finger ends are chosen to be
narrower than the strips in the middle region of the
fingers. In the following, £ and §,, respectively, denote
the midpoint coordinate and one half of the width of the
Ith strip; x? and xf, respectively, are the start and end
point coordinates of the /th strip.

Employing MoM, most commonly impulse, pulse, or
triangle functions are used as basis functions. The follow-
ing analysis will be based on pulse functions; i.e.,

p(x) = lgp,-mx)

(15)

where

5 b e
P,(x)={1 if x) <x<x;

0 otherwise

(16)

with [*2P,(x)dx=xf— x}. The quantity p, denotes the
constant unknown charge density value on the /th strip.
We now replace the unknown charge density values p, by
the corresponding charge density integrals, i.e., by the strip
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charges q,= p,(xf — x7). As a result we have

P = Lo i (1)

(xle - X
Because of the nonequidistant discretization of the fingers,
this, from a computational point of view, is an important
step. While the terms g, are approximately of the same
order of magnitude, the values of p, can differ by many
orders of magnitude. On the other hand, taking ¢, as the
unknowns becomes necessary if we try to obtain a sym-
metric matrix as a final result (eq. (29)).
The Fourier transform of p(x) can be carried out di-

rectly, giving
N, 1 e kXt — kXl

Ea—)

(18)

V. POTENTIAL DISTRIBUTION ON THE SURFACE

As mentioned above, the potential at the surface can be
written as the sum of the two components ®®(x) and
O@(x). At this stage of calculation we have to establish an
appropriate inner product, denoted by (u,v). In this con-
text, in the theory of MoM, a frequently used inner prod-
uct of two complex-valued functions u(x) and v(x) is
defined as

(u,u>=f_+:u(x)u*(x) dx (19)

where the asterisk denotes the complex conjugate. Next,
we have to choose proper weighting functions. As in the
case with basic functions, usually impulse, pulse, or trian-
gle functions are used as weighting functions. In the pre-
sent analysis, we will use pulse functions P,(x).

For a nonequidistant discretization (as in our case), it is
necessary to use a modified form of (19) (normalized
weighting functions). Applying this to ®(x) we obtain

f+:<1)(x)Pk(x) dx

P = (20)

TP (x)dx
— o0

(P(x) is a real-valued function; therefore we have
PX(x) = P,(x).) The quantity ¢, is the potential applied
to the kth strip. Inserting (3) into (20) together with
[E2P(x)dx =xf— x! yields

o= + o (21)

with

(O P L% N0
L ermrry P (x)
Here ¢V and ¢{? are the contributions to the potential of
the kth strip arising from G¢(x) (G*(k,)) and G3A%¥(x),
respectively. .
With regard to (22), in the next four calculation steps we
will formulate approximations for ®V(x), ¢, ®@(x),
and, finally, ¢@.

(i=1,2). (22)
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Approximation for ®V(x)

Insertion of (18) into (6) and subsequent interchange of
the order of summation and integration yield

8O(x) = ¥ g
X)= 2 Gy

eJhxi—x) _ grki(x}—x)

+00
X/_ Ge(kx) Jk

dk,. (23)

Approximation for ¢
Insertion of the above equation into (22), rearrangement
of the order of summation and integration, and calculation
of the integrals over x yield
N,

1) 1
¢§c)— Z ‘11'1151)
=1

N

(k=1,---,N,) (24a)

with
1 ;o0

IP=—| G*(k,)-sinc(8,k,)-sinc(8,k,)
7 Yo

-cos (k& ~ &) dk,. (24b)

Deriving 1" we have used the property that G°(k,) is an
even function of k,. With regard to (7) this condition is
met. Generally, for problems where the reciprocity condi-
tion holds, this property remains valid.

Remarks

1) I is symmetric with respect to the indices k and I;
ie. I® =I. This property results from the reciprocity
relations (symmetric Green’s function), the fact that we

have chosen the same functions (pulse functions) for the

basis as well as for the weighting functions, and, finally,
the fact that we have replaced the unknowns p, by the
corresponding g¢,.

2) In the imit D — o0; i.e., in the case of a semi-infinite
substrate, I{P can be calculated analytically:

1
meo(L+ep,)  (xi—xP)(xf —xP)

(=) et - xf

1)
9=

—(xb=x;)* In|xl - x{]
—(x¢ —xt)* In|xg — x}|

+(xg = xf)* - Infxg — x|

(25)

3) For k #/ the oscillation of the integrand in (24b)>

mainly is given by |£§7 — £/"| in the argument of the cosine
function. (For k # I we have |£7' — £} > §,, 8,.) If k equals
1, then the integrand oscillates according to sin®(8,k.).

Approximation for ®@(x)

Insertion of the approximation for p(x) (eq. (17)) and
G5AW¥(x) (eq. (14)) into (5), interchange of the order of
summation and integration, and calculation of the result-
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ing integrals lead to
2P (x) = % 912 (x) (262)
[=1
with
() = g

ko(xle - xlb)
[+ e koaf=x _ g=skotat—x] if x < x2( < x?)

[—24 erkoa=2) 4 grkotat =]

if x?<x<xf

[_ e Tko(xi =) | g k(s =] if (xf < )xf<x.

(26b)

Approximation for ¢®

Inserting (26a) into (22), interchanging the order of
summation and integration, and evaluating the associated
integrals, we obtain

o= %‘.qz-bﬁ?’ (k=1,---,N,)  (27a)
=1
with |
— jG,e ko~ sinc (6,k,)
19 = -sinc (8,k,) fk=+1
8,]:0 [—1+e_‘jk°8’-sinc(8,k0)] if k=1.
(27b)

Notice the symmetry property of I{? with respect to the
indices k and /; ie., I = I?.

Now, having calculated the approximate expressions for-
o and ¢, the evaluation of ¢, is straightforward.
Equation (21) together with (24a) and (27a) yields-

N,
=2 gy (28)
I=1
where 4,,= IV + I{?. The I}’ and I are both symmet-
ric. Hence we have 4,;, = 4,,. Equation (28) in matrix form
reads

(kz:ls"'st)

(29)

Thus, we have derived a relation between the given
potentials of the fingers and the unknown charge values on
the strips. Solution of the matrix equation (29) results in
the charge density integrals, which depend on the fre-
quency. The frequency dependence manifests itself in %,
according to (27b).

The matrix A4 can be extended in a simple manner to
include in the analysis single and/or blocks of intercon-
nected floating fingers. The procedure is the same as we
have already discussed for purely ¢lectrostatic problems in
semi-infinite media [6], [32]. Floating fingers can be ana-
lyzed simultaneously with neighbor active fingers, and no
iteration steps are required.

9:4.6_1.
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Fig. 2.

IDT geometries of filters #1 and #2.

VI. INnpuT POWER OF A SAW IDT

The electrical input power for any SAW transducer of
uniform finger length W is given by

. (30)

where the current density i(x) is defined as i(x) = jwp(x).
Substituting i(x) into (30) yields

1 + o0
P, = —W-Re/_ ®(x)i*(x) dx

1 + o0
Py=oW-Im[ @ (x)p*(x)dx. (31)
2 —
Inserting (15) into (31) and interchanging the order of
summation and integration, with regard to (20) and with
the definition g, = p,(xf — x?) we obtain
N,

1 £l
P,= EwW' Im Z 9, (32)
’ /=1

VII. EXPERIMENTAL RESULTS AND SIMULATIONS

Two SAW filters #1 and #2, consisting of two un-
weighted split finger IDT’s, were fabricated and measured.
The IDT’s consisting of six active overlaps had a center
frequency of 140 MHz and an aperture of 3000 pm. In
addition to the active fingers, filters #1 and #2, respec-
tively, had at the left and right sides six and 11 dummy
fingers (see Fig. 2). These fingers are usually added to the
active region of an IDT to approximate an infinite peri-
odic grating, for which in the case of a semi-infinite
substrate a closed-form formula for the charge distribution
is available [17].

The measurement range was from 45 to 235 MHz and
included the main lobe and the nearest sidelobes of the
sin(x)/x transfer function. For a better discrimination of
the second-order effects involved, the data were trans-
formed into the time domain (Figs. 3 and 4).

The trailing peaks marked by arrows in Figs. 3 and 4
result from IDT end reflections. While reflections cancel
within the IDT because of the A /4 spaced fingers, this is
not the case at the ends. This is due to the fact that the
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Fig. 3. Measured time-domain response of filter #1. (a) Upper pad

driven, “grounded” dummy fingers. (b) Lower pad driven, “hot”
dummy fingers.
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Fig. 4. Measured time-domain response of filter #2. (a) Grounded
dummy fingers. (b) Hot dummy fingers.
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Fig. 5. Calculated time-domain response of filter #1. (a) Grounded
dummy fingers. (b) Hot dummy fingers. (¢) Semi-infinite substrate.

reflectivity of a single finger at the end of the IDT is
different from the reflectivity of a finger within the IDT.
This effect cannot be predicted by models based on the
cascading of identical three-port unit cells [37], whose
parameters are obtained from an infinite array analysis.
To demonstrate the versatility of the presented method,
we have calculated (Figs. 5 and 6) the time response of #1
and #?2, respectively, for the following two cases: curves
(a) with the dummy fingers grounded and curves (b) with
excited dummy fingers. For comparison, we have also
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Fig. 6. Calculated time-domain résponse of filter #2. (a) Grounded
dummy fingers. (b) Hot dummy fingers. (¢) Semi-infinite substrate.

included the time response of the IDT on a substrate with
infinite thickness (curves (c) in Figs. 5 and 6). The pedestals
appearing for case (b) at both sides of the main response
are due to charge accumulation on the “hot” dummy
fingers induced by the presence of the grounded back
plane. The arrows mark reflections from the IDT ends.
The calculated time response of the devices is in good
agreement with the measurements. '

VIIL

Employing the method of moments and the concept of
the Green’s function in conjunction with the spectral-
domain representation, an efficient semianalytical method
for the analysis of SAW interaction with IDT’s has been
presented. Nearly all of the occurring formulas have been
derived in closed form. The influence of end fingers as well
as the influence of a grounded metal back plane on the
charge distribution has been simulated by means of this
method. Theoretically and experimentally, three second-
order effects in SAW IDT’s are shown. The first is the
charge accumulation- on grounded guard fingers located
close to the IDT end, resulting in unwanted end radiation.
The second is acoustic end reflections in split-finger IDT’s.
The third is the influence of the metal ground plane on the
charge distribution when the transducer is driven unbal-
anced to ground. Good agreement between computer sim-
ulations and experimental results is achieved.

CONCLUSION
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