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Abstract — We present the amdysis and measurement of spurious re-

sponses geuerated at the ends of surface acoustic wave (SAW) interrfigital

transducers (IDT’s). Filters fabricated on LINb03 show an nnwanted

passband ripple whose period indicates additional generation of acoustic

waves at the IDT end. As this effect cannot be explained by methods of

anafysis based on the infinite array approximation, an exact anafysis of the

complex-vahsed, frequency-dependent electric charge distribution on the

finite IDT structure is required.

Utilizing the method of moments, our anafysis is based on a Green’s

function concept and a spectral-domain representation. Three effects are

showm The first is the charge accumulation of grounded guard fingers

located closely to the IDT end, resulting in unwanted end radiation. The

second is acoustic end reflections in split-finger IDT’s, occurring at the

transition from the periodic finger structure to the free substrate. The third

is the finger charge induced by the metallic ground plane when the

transducer is driven nnbrdanced to ground. Computer simulations based on

our method agree well with measurements.

L INTRODUCTION

BASICALLY a SAW filter consists of launching and

receiving IDT’s. These are tomblike thin metallic

strips (fingers) deposited on the plane surface of a piezo-

electric substrate. The general features of SAW propaga-

tion and SAW interaction with IDT fingers are now well

understood. Nevertheless, to fulfill the stringent require-

ments for SAW filters employed in modern telecommuni-

cation equipment, it is necessary to understand the mecha-

nisms of the various second-order effects [1], [2], which

cause considerable discrepancy between first-order theory

and experimental data. As a next step these effects are to

be incorporated into the design models and are to be

corrected by an iterative design procedure. Among others,

the following are the predominant second-order effects:
mechanical and electrical reflections in IDT’s [3], energy

storage effects on SAW propagation in periodic arrays [4],
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influence of external matching on phase and amplitude

response, transducer end effects and neighbor coupling

effects [5], [6], transversal end effects in SAW IDT’s [7],

[8], coupling to electromagnetic waves and acoustic bulk

waves [9]–[13], losses due to the finite resistivity of the

fingers [14], [15], surface wave diffraction and beam steer-

ing [16], the waveguiding effect in SAW-IDT’S, and losses

due to surface roughness of the piezoelectric substrate.

Some of these effects are still subjects of active research.

The present paper for the first time discusses three

second-order effects, which can be observed if a SAW IDT

with a finite number of fingers is deposited on the surface

of a piezoelectric substrate with a metallized grounded

back plane.

The SAW filter substrate must be neither too thin

(fragile) nor too thick because this leads to excessive

electromagnetic feedthrough and economically is unsound

(typical wafer thickness, 500 pm). To suppress electromag-

netic cross talk between the input and output IDT, a SAW

filter is usually mounted in a shielding metal casing. Con-

ductive (silver loaded) adhesives are often used to coat the

backside of the crystal substrate and to mount it in its

housing. Due to the finite dimension of the substrate the

time-domain response of the device depends on the IDT

driving arrangement (upper or lower pad driven with re-

spect to ground, Figs. 3 and 4).

Filters fabricated on LiNb03 show an unwanted pass-

band ripple whose period indicates additional generation

of acoustic waves at the IDT end. As this effect cannot be

explained by methods of analysis based on the infinite

array approximation [17], an exact analysis of the com-
plex-valued, frequency-dependent electric charge distribu-

tion on the finite IDT structure is required [18]–[20]. The

latter can be regarded as the distributed source of the

excitation of acoustic waves due to the corresponding

Coulomb forces in the piezoelectric crystals [21].

In the following, based on a Green’s function concept

[9], [25] (for a theoretical treatment see, for example,

[22] -[24]), a spectral-domain representation [26] -[28], and

the method of moments (MoM) [29] –[31], an efficient

formalism [6], [8], [19], [32]–[34] for the calculation of the

spatial charge density distribution will be presented.
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In treating linear boundary value problems, as is well

known, the primary task is the construction of a Green’s

function, which is the response of the medium under

consideration to a Dirac 8 excitation (line-, point-source

excitation). Generally, the construction of Green’s furic-

tion is a difficult procedure. Using spectral-domain repre-

sentation, the determination of Green’s function in the

wavenumber domain can be simplified considerably. In

this way the governing system of linear differential equa-

tions in conjunction with the imposed boundary conditions

is transformed into a linear system of algebraic equations.

A simple elimination procedure reveals a relation between

the spectral components of the source and the response

functions. From the latter, by inspection, Green’s function

in the wavenumber domain can be found.

In the wavenumber domain many interesting facts can

be deduced from the functional behavior of Green’s func-

tion. As we will demonstrate below, Green’s function will

or will not have a pole singularity at the origin, depending

on whether or not the line charge source, which excites the

medium, is isolated. (If at a finite distance from an as-

sumed line charge source a grounded, unbounded metallic

body does not exist, the line source may be called isolated.

Otherwise it is a nonisolated one.) Simple pole singularity,

say at k = ko, represents a surface wave, while a branch

point singularity at k = k~ characterizes a volume wave

(bulk wave excitation is not treated in this paper).

However, a problem arises: the resulting Green’s func-

tion in the wavenumber domain must be transformed into

the real space. This is a difficult procedure, which inher-

ently is accompanied by integral transform techniques.

From a computational point of view, it is more efficient in

some cases to perform the inverse Fourier transform of the

product of Green’s function in the wavenumber domain

and Fourier transform of the source distribution, which

excites the medium. The advantages of this technique will

be extensively discussed in Section II.

As we will discuss below, the Green’s function con-

structed for our boundary value problem consists of two

parts, a purely electrostatic part and a second part, which

describes the SAW propagation on the surface of a semi-

infinite anisotropic piezoelectric substrate. In the wave-

number domain both components are given in closed form.

In the real space, the SAW part can be derived analyti-

cally, while for the electrostatic part, in its general form,

there is no closed-form representation. However, in the

special case where the permittivity of the substrate mate-

rial is much higher than that of free space, the electrostatic

component can also be derived analytically.

The constructed Green’s function is a good approxima-

tion if the predominant acoustic wave is a Rayleigh wave.

Nevertheless, the method discussed here is not restricted to

Rayleigh wave excitation problems only. A proper exten-

sion of Green’s function discussed here allows the calctda-

tion of IDT interaction with both surface and bulk acous-

tic waves [12], [13]. Moreover, employing the same method

of analysis, the diffraction problem of acoustic waves

excited by arbitrary finite structures on piezoelectric media

can be analyzed efficiently [12], [13].

In what follows, first, using Green’s function in the

spectral domain and the inverse Fourier transform, an

integral relation for the potential distribution on the sur-

face of the substrate is established. Then, employing the

MoM, the associated integral representation is reduced to

a matrix equation. In this way the SAW components of the

elements of the involved matrix are evaluated analytically.

The solution of the resulting linear system of eqpations

yields an approximation for the clharge distribution. From

the latter all the relevant characteristics of the SAW IDT

can be derived in analytical form, A fairly simple modifi-

cation of the aforementioned matrix makes it possible to

include in the analysis the single and interconnected float-

ing fingers with arbitrary geometrical complexity [6], [32].

It must be emphasized that, from a computational point of

view, the main advantage of the present method is the

possibility of deriving nearly all of the occurring formulas

in closed form, so that the time-consuming numerical

evaluation of the Fourier transform is avoided.

This paper is organized as follows. In Section II the

basic relations are established and the proposed solution

procedure is outlined. Section III deals with a discussion

of the Green’s function for our kloundary value problem.

In Section IV, based on a nonequidistant discretization of

the fingers, a step function approximation of the charge

density distribution on the fingers is formulated. In section

V the MoM is applied to our problem. A simple expression

for the input power of a SAW IDT is derived in Section

VI.

In Section VII simulation results based on our theory

are compared with experimental data. Three effects, will be

discussed. The first is the charge accumulation on grounded

guard fingers located close to the IDT end, resulting in

unwanted end radiation. The second is acoustic end reflec-

tions in split-finger IDT’s, occurring at the transition from

the periodic finger structure to the free substrate. The third

is the finger charge induced by a metallic grounded back

plane when the transducer is driven unbalanced to ground.

Several SAW filters consisting of unanodized split-finger

IDT’s with varying numbers of guard fingers have been

fabricated. The frequency response has been measured and

transformed into the time domain, where the different

effects of interest can be observed separately. The calcu-

lated time response of the devices is in good agreement

with measurements.

II. THEORY

Assume Nf infinitely thin metallic fingers with ideal

conductivity deposited in parallel fashion on the plane

surface of a piezoelectric substrate of finite thickness D.

The finger geometry and the finger potentials ]may be

arbitrary. The back side of the substrate maybe metallized
and grounded (Fig. 1). The problem is to find an efficient

method for the analysis of the frequency-dependent spatial

charge density distribution. Once the charge distribution

on the fingers has been calculated, all the relevant IDT

parameters, such as the total capacitance, the input admit-

tance, and, consequently, the insertion loss, can be uniquely

determined [9]-[13].
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&

Fig. 1. SAW IDT on the surface of a piezoelectric substrate of finite
thickness with grounded back plane.

The linearity of the boundary value problem sketched in

Fig. 1 implies the validity of the superposition principle.

Equivalent to the latter property is the fact that the poten-

tial on the surface of the substrate, @(x), can be written as

a convolution integral:

@(x)=J+m G(x’–x)p(x’) t&’ (1)

—cc

where p(x) is the spatial charge density distribution and

G(x) is the Green’s function characterizing the boundary

value problem shown in Fig. 1. By definition, G(x) is the

potential distribution on the surface of the substrate if an

infinitely long line charge source in the y direction located

at x = O excites the medium. A time dependence according

to e]a’ is assumed. As will be discussed below, for the

problem sketched in Fig. 1 the Green’s function and

consequently the charge distribution depend on the angu-

lar frequency u. Keeping in mind that for each frequency

value the charge distribution must be evaluated individu-

ally, in (1) the variable o has been omitted.

Remark

Actually, in the above boundary value problem, the

potential response of the medium to a line charge source

is a two-dimensional function, G (x, z). Now, what is

the reason for referring to G(x) with the property

lim , ~ ~G(x, z ) = G(x) as the Green’s function? This is

due to the fact that the distributed source, which controls

the electric potential (electric field) distribution, is located

on the fingers, which reside in the interface and possess

given potential values. Therefore we have to construct an
expression for the potential distribution on the surface and

match (relate) it to the given potential values of the fin-

gers, if the variable x passes the finger regions. Conse-

quently, for the problem treated here, only the electrical

conditions on the surface of the substrate must be under-

stood.

Following the ideas of Milsom et al. [9] (they considered

a line charge source excitation of a semi-infinite piezoelec-

tric substrate) and disregarding the excitation of bulk

acoustic waves, G(x) can be decomposed into two parts:

G(x) ‘Ge(x)+@Aw(x). (2)

G’(x) and GSAW(.X) are, respectively, the electrostatic and

the SAW component of Green’s function. Insertion of (2)

into (1) yields

@(.x) =@(’) (.x)+@(Z)(x) (3)

with

@(’)(x) = (-: Ge(x’–x)p(x’)dx’ (4)

and

@(z)(X) = ~~~GsAw(x’- X)~(X’) dX’. (5)

An equivalent formula for @‘l)(x) is

1 +cO–
@(’)(x) = ~/_m G=(kX)~(kX)e-J’~’d kX. (6)

(Convolution in configuration space corresponds to multi-

plication in the wavenumber space [35].) The bar indicates

Fourier transform.

For the following reason we will use (6) instead of (4)

for ~(l)(x). Equation (4) demands the determination of

the Green’s function in real space. Apart from some simple

cases, generally it is not possible to transform the Green’s

function from the wavenumber domain into real space in

closed form. The associated Fourier integrals must be

evaluated numerically. Calculating these oscillating inte-

grals, the behavior of @(kX) for large and small values of

kX will be of importance. As will be shown in the next

section for kXs> 1, we have @(kX) - l/kX ( - symbolizes

asymptotically equal to). Now, if we use a step function

approximation for the charge density distribution on the

fingers we obtain 1D(kX) I - l\kX. Thus for kX >>1 the

relation @(kX) I~(kX) I - l/k< is valid. Using a triangle

function approximation for the charge density distribution

we have @(kX) l~(kX) I - l\k~. Therefore, comparing

Fourier integral representations

G(x) =1/2~~+~@(kX)e-’k’dkX
—w

and

O(’)(x) =1/2 fi~+@@(kX)D(kX) e-JkxdkX
—co

for Green’s function and for the potential distribution on

the surface, respectively, the following can be concluded:

For k.>> 1 the integral expression for Q(l)(x) shows a
better convergence behavior than the integral representing

G(x). Further, for problems where ~e(kX) is singular at

kX = O, we have ,6(0) = lim’ .+o f~~p(x)eykx dx =
J 3 3P(x) dx = O, w~ch is the condition for charge conser-
vation. Therefore, Ge(kX)~(kY) in (6) is regular at kX = O.

(In cases where @(kX) is regular at kX = O there is no

difficulty at all.) From these we conclude that the inte-

grand in (6) is always a well-behaved function for both

kX <<1 and kX >>1.

With regard to (3), (5), and (6), and following the

concept described in [6], [8], [12], [13], [18], [19], and

[32] -[34], the following solution procedure can be outlined.



153BAGHAI-WADJI et al.: TRANSDUCER END RADIATION IN SAW FILTERS

Solution Procedure

i)

ii)

iii)

iv)

iv)

vi)

vii)

viii)

ix)

x)

xi)

Derive the expression for @(kX).

Constmct an expression for @Aw(kx).
Determine the inverse Fourier transform of

@Aw(k.)...
Discretize the fingers (nonequidistantly) in N.

strips.

Using suitable basis functions, construct a sum

approximation for p(x) and from that a sum

approximation for P( kX).

Insert @(kX) and the approximation for F(kX) in

(6), interchange the order of summation and inte-

gration, and evaluate (numerically) the involved

integrals. The resulting expression is an approxi-

mation for O(l)(x).

Insert GSAW(x) and the approximation for p(x)

in (5), interchange the order of summation and

integration, and evaluate the involved integrals (in

closed, form). The resulting expression is an ap-

proximation for Q(2)(x).

Equation (3) together with (5) and (6) yields an

approximation for @(x ), the potential distribu-

tion on the surface of the substrate.

Choose appropriate weighting functions.

Define an inner product for two complex-valued

functions.

Apply MoM to Q(x). This leads to a system of N.

equations for N. unknown charge values on the N,

strips.

In what follows, for @(kX) and GSAW(X), respectively,

we will use our previously published results [33] and the

approximation given by Milsom et al. [9].

III. GREEN’S FUNCTION

In the preceding section the results of the Green’s func-

tion concept were presented in a general form. Attention is

now turned to an approximation to the general theory.

Here we will discuss the expressions for the aforemen-

tioned two components of the Green’s function. First, we

will discuss the properties of the electrostatic component

of the Green’s function in the wavenumber domain and

then the SAW component of the Green’s function both in

the wavenumber domain and in the configuration space.

A. Electrostatic Component of Green’s Function

In [33] we have shown that @(kX) has the functional

form

with

-ifp, r— %1, #33, ?. —~:3, r7

where ~~,, is the effective relative permittivit y constant for

the anisotropic substrate in Fig. 1. D is the thickness of

the substrate. @( kX) is an overall regular function, with

the following properties:

1) The first concerns the behavior of @(kX) in the limit
D ~ ~. In tfis limit the line charge source on the substrate

surface is no longer shielded by a grounded plane at a

finite distance. The line source becomes isolated. In this

case for a SAW IDT on the surface, the charge neutrality

condition must be met; i.e., (F(O) ==)/~ %P(x) dx = 0. De-

noting Green’s function for the semi-infinite substrate by

~~(kX) and introducing the parameter a= = 1/60.

(1+ fP, ,), then from (7) we have

(8)

As is known, the expression on the right-hand side is the

Green’s function for a semi-infinite anisotropic substrate,

with the characteristic pole singularity at kX = O. In real

space, if we interpret the inverse Fourier integral of (8) in

Cauchy’s sense, we obtain

where y is Euler’s constant. Inserting (9) into (4), with

regard to the charge neutrality condition, get

@~)(x) = - ~~~~lnlx’- xIP(x’) dx’. (10)

Note that the pole singularity in ~~(kX) results in the

divergent term limf ~ ~lnc, which only in connection with

the charge conservation condition leads to a physically

meaningful expression for @#(x)<

2) The second property co~cern:s the behavior of @(kX)

in the limit kX ~ O: lim~x+o Ge(kJ = D/(cocJ~,,) ==const.

In contrast to Green’s function of the semi-infinite sub-

strate, (eq. (8)), F( kX) is regular at kX = O. This is because

the line charge source, which excites the medium, is

shielded by the grounded plate ( nonisolated line charge

source).

3) For the special case where the permittivity of the

substrate material is much higher than that of free space

(&,,, > 1) we find the following approximate formula for

G’(kX):

-—-tanh($w)-“1)
111

@(kX) =
co l+~p,r Wxl

The inverse Fourier transform of (11) can be carried out

analytically [36], yielding

G’(x) = ‘A1n(cOth(:%l’12)’760 l+cp, r

B. SAW Part of Green’s Function

Up to this point we have entirely neglected the piezo-

electric property of the substrate. To include this ef feet, we

use an approximation for the SAW component of the

Green’s function discussed by Milsom et al. [9]. This

approximation will be based on the assumption that the

predominant surface acoustic wave is a Rayleigh wave. In
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addition, we shall assume that the bulk acoustic waves are

not excited. Therefore, while for the electrostatic part of

the Green’s function we have taken into account the finite

thickness of the substrate, constricting the SAW part we

may assume that the piezoelectric substrate is a semi-

infinite medium. The validity of this approach for the

frequency range of interest is established by comparing

calculated results with experimental data (Section VII).

Milsom et al. [9] have shown that, for a semi-infinite

piezoelectric substrate, the SAW part of the Green’s func-

tion @Aw(k.) can be written as

@Aw(kx) = ~

x o
(13)

G. is a piezoelectric coupling factor and k. is the

wavenumber at the free surface of the substrate for a

Rayleigh wave propagating with velocity U. at frequency

u. An expression analogous to (13) can be obtained di-

rectly if the propagation of a disturbance caused by a

Dirac 8 force on a infinitely long string with uniform mass

density is considered,

Using (13) and applying Cauchy’s residue theorem,

Milsom et al. have shown that the resulting Green’s func-

tion for a line charge source located at x = O is

GSAW(X)==- jG~e-Jb[xl (14)

(remember a time dependence according to eJ@t has been

assumed). Taking the magnitude of x in the exponential

term ensures the propagation of outgoing waves only. The

negative sign in the exponent is due to the positive sign in

the exponent of ej”t. As k. is proportional to u, GSAW(X)

depends on frequency.

IV. APPItOXIMATIO~ OF THE CHARGE DENSITY

Assume that the fingers have already been discretized

into N, strips. (To emphasize the logarithmic singularity of

the electrostatic part of the charge density at finger edge

points, the strips at the finger ends are chosen to be

narrower than the strips in the middle region of the

fingers. In the following, $? and 81, respectively, denote

the midpoint coordinate and one half of the width of the

lth strip; x? and x;, respectively, are the start and end

point coordinates of the lth strip.

Employing MoM, most commonly impulse, pulse, or

triangle functions are used as basis functions. The follow-

ing analysis will be based on pulse functions; i.e.,

N.

p(x) = ~ p,.Pi(x) (15)
1=1

where

{
Pi(x) = 1 ifx}<x <x;

o
(16)

otherwise

with J ~ ~PI (x ) dx = x; – x?. The quantity p, denotes the

constant unknown charge density value on the 1th strip.

We now replace the unknown charge density values p[ by

the corresponding charge density integrals, i.e., by the strip

charges q, = pl(x: – x!). As a result we have

p(x)= iql.
1:1 (Xf:xj) p’(x)”

(17)

Because of the nonequidistant discretization of the fingers,

this, from a computational point of view, is an important

step. While the terms ql are approximately of the same

order of magnitude, the values of p, can differ by many

orders of magnitude. On the other hand, taking ql as the

unknowns becomes necessary if we try to obtain a sym-

metric matrix as a final result (eq. (29)).

The Fourier transform of p(x) can be carried out di-

rectly, giving

V. POTENTIAL DISTRIBUTION ON THE SURFACE

As mentioned above, the potential at the surface can be

written as the sum of the two components @(1)(x) and

O(z)(x). At this stage of calculation we have to establish an

appropriate inner product, denoted by (u,;). In this con-

text, in the theory of MoM, a frequently used inner prod-

uct of two complex-valued functions U(X) and u(x) is

defined as

(u, v)=~+’%(x)u’(x)dx
—w

(19)

where the asterisk denotes the complex conjugate. Next,

we have to choose proper weighting functions. As in the

case with basic functions, usually impulse, pulse, or trian-

gle functions are used as weighting functions. In the pre-

sent analysis, we will use pulse functions Pk(x).

For a nonequidistant discretization (as in our case), it is

necessary to use a modified form of (19) (normalized

weighting functions). Applying this to @(x) we obtain

j+m@(X)Pk(X)dX

Tk= ‘~+~pk(x)dx “ (20)

(Pk(x) is a real-valued function; therefore we have

Pk* (x) = Pk(x).) The quantity gk is the potential applied

to the kth strip. Inserting (3) into (20) together with

j~%pk(x) dx = x: – x: yields

~k = ~~) + ~y) (21)

with

Here q?) and cp~z)are the contributions to the potential of

the kth strip arising from G’(x) (@(kX)) and GSAW(X),

respectively.

With regard to (22), in the next four calculation steps we

will formulate approximations for @‘1)( x), rff), @(2)(x),

and, finally, cp~2J.
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Approximation for O(l)(x) ing integrals lead to

Insertion of (18) into (6) and subsequent interchange of

the order of summation and integration yield

q+m@wx)
~k(xf-x) _ ~JL(x/-x)

dk,. (23)
—co jkX

Q@(x)= ; qlp(x)
1=1

with

155

(26a)

G,
I/(z)(x) =

ko(x; –x;)

([+~–JkO(+x) _~–Jko(x:–x) 1 if x <x~( < x;)

Approximation for qf~ ([ – 2+ ~–Jko(xf–x) + ~Jkc&:-@
:1 ifx~<x<,xf

uInsertion of the above equation into (22), rearrangement – e~~o(xf-x) + eJko(xf ‘x) 1 if (xf<)x~ <x.
of the order of summation and integration, and calculation

of the integrals over x yield (26b)

N, Approximation for q~2)
~f) = ~ q,. ~;) (k=l,..., N,) (24a)

Inserting (26a) into (22), interchanging the order of
[=1

summation and integration, and evaluating the associated
with integrals, we obtain

l#=~~m@(kX)sinc(*kkX)sinc(81kX)
N,

Tf) = ~ q,. @ (k=l,..., ).) (27a)
1=1

.COS (kXl$~ – ~~1) dk.. (24b) with

Deriving Is) we have used the property that @(kX) is an

[

– jG$e-Jk.[g~ ‘ff’l. SinC ( dkko)
even function of kX. With regard to (7) this condition is

met. Generally, for problems where the reciprocity condi- ~j;) = . sine ( 81kO) ifk+l

tion holds, this property remains valid.

Remarks
~[-l+e-~k08sinc[81kO)] if k=l.

/0

1) 1# is symmetric with respect to the indices k and 1;

i.e. Ii}) = ~~f). This property results from the reciprocity

relations (symmetric Green’s function), the fact that we

have chosen the same functions (pulse functions) for the’

basis as well as for the weighting functions, and, finally,

the fact that we have replaced the unknowns p, by the

corresponding q,.

2) In the limit D + co; i.e., in the case of a semi-infinite

substrate, ~~}) can be calculated analytically:

1 1
1#) =

mo(l+cp,r) “ (X; -x:)( x;-xf)

-[+(XH’)2WX;-X:I

-(x: -xf)zlnlxj-xfl

- (x; - xf)2.1nlx; - x~l

1+(x~–x;)’ .lnlx~–xfl . (25)

3) For k # 1 the oscillation of the integrand in (24b)

mainly is given by 1$~ – $~ I in the argument of the cosine
function. (For k # 1 we have l~fl – f~l > ~k, 8,.) If k equals

1, then the integrand oscillates according to sin’(ti,kx).

Approximation for @(’)(x)

Insertion of the approximation for p(x) (eq. (17)) and

GSAW(X) (eq. (14)) into (5), interchange of the order of

summation and integration, and calculation of the result-

(27b)

Notice the symmetry property of 1#) with respect to the

indices k and 1; i.e., 1~~)= I/~J.

Now, having calculated the approximate expressions for’

q# and cp~), the evaluation of cpk is straightforward.

Equation (21) together with (24a) and (27a) yields

N,

~k = ~ Wfk[ (k==l,..., N,) (28)
[=1

where Akl = I& + 1~~). The Ij}) and 1# are both symmet-

ric. Hence we have Akl = Alk. Equation (28) in matrix form

reads

q=~.q. (29)— —

Thus, we have derived a relation between the given

potentials of the fingers and the unknown charge values on

the strips. Solution of the matrix equation (29) results in

the charge density integrals, which depend on the fre-

quency. The frequency dependence manifests itself in k.

according to (27b).

The matrix ~ can be extended in a simple manner to

include in the ‘malysis single and/or blocks of intercon-
nected floating fingers. The procedure is the same as we

have already discussed for purely electrostatic problems in

semi-infinite media [6], [32]. Floal,ing fingers can be ana-

lyzed simultaneously with neighbor active fingers, and no

iteration steps are required.
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IDT #1

IDT #2

Fig. 2. IDT geometries of filters #1 and #2.

VI. INPUT POWER OF A SAW IDT

The electrical input power for any SAW transducer of

uniform finger length W is given by

~in=+WReJ+m@(x)j*(x)~~(30)
—cc

where the current density i(x) is defined as i(x) = j~p(x).

Substituting i(x) into (30) yields

‘irr= ~ow-lmj+m@(X)P*(x)dx (31)
–m

Inserting (15) into (31) and interchanging the order of

summation and integration, with regard to (20) and with

the definition q,= pl(x~ – x;) we obtain

,4
1=1

VII. EXPERIMENTAL RESULTS AND SIMULATIONS

Two SAW filters #1 and #2, consisting of two un-

weighed split finger IDT’s, were fabricated and measured.

The IDT’s consisting of six active overlaps had a center

frequency of 140 MHz and an aperture of 3000 pm. In

addition to the active fingers, filters # 1 and #2, respec-

tively, had at the left and right sides six and 11 dummy

fingers (see Fig. 2). These fingers are usually added to the

active region of an IDT to approximate an infinite peri-

odic grating, for which in the case of a semi-infinite
substrate a closed-form formula for the charge distribution

is available [17].

The measurement range was from 45 to 235 MHz and

included the main lobe and the nearest sidelobes of the

sin(x )/x transfer function. For a better discrimination of

the second-order effects involved, the data were trans-

formed into the time domain (Figs. 3 and 4).

The trailing peaks marked by arrows in Figs. 3 and 4

result from IDT end reflections. While reflections cancel

within the IDT because of the A/4 spaced fingers, this is

not the case at the ends. This is due to the fact that the

,650E .63B0 .66=0 69B~ .7200 75~~ 7S00 .s3 lBO .84B@ .!370% 9BW3

time [ps]
Fig. 3. Measured time-domain response of filter #1. (a) Upper pad

driven, “grounded dummy fingers. (b) Lower pad driven, “hot”

dummy fingers.

.OaOOm
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.’$
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~%
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-70.OB r

time [ps]

Fig. 4. Measured time-domain response of filter #2. (a) Grounded

dummy fingers. (b) Hot dummy fingers.

0.600 0.650 0.700 0.750 0.800 0.850 0.900

:~

time [p]

Fig. 5. Calculated time-domain response of filter #1. (a) Grounded
dummy fingers. (b) Hot dummy fingers. (c) Semi-infinite substrate.

reflectivity of a single finger at the end of the IDT is

different from the reflectivity of a finger within the IDT.

This effect cannot be predicted by models based on the

cascading of identical three-port unit cells [37], whose

parameters are obtained from an infinite array analysis.

To demonstrate the versatility of the presented method,

we have calculated (Figs. 5 and 6) the time response of # 1

and #2, respectively, for the following two cases: curves

(a) with the dummy fingers grounded and curves (b) with

excited dummy fingers. For comparison, we have also
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0.600 El.650 0.700 0.750 0.800 8.850 0. 9W

‘“0 ~

time [p.]

Fig. 6. Calculated time-domain response of filter #2. (a) Grounded

dummy fingers. (b) Hot dummy fingers. (c) Semi-infinite substrate.

included the time response of the IDT on a substrate with

infinite thickness (curves (c) in Figs. 5 and 6). The pedestals

appearing for case (b) at both sides of the main response

are due to charge accumulation on the “hot” dummy

fingers induced by the presence of the grounded back

plane. The arrows mark reflections from the IDT ends.

The calculated time response of the devices is in good

agreement with the measurements.

VIII. CONCLUSION

Employing the method of moments and the concept of

the Green’s function in conjunction with the spectral-

domain representation, an efficient semianalytical method

for the analysis of SAW interaction with IDT’s has been

presented. Nearly all of the occurring formulas have been

derived in closed form. The influence of end fingers as well

as the influence of a grounded metal back plane on the

charge distribution has been simulated by means of this

method. Theoretically and experimentally, three second-

order effects in SAW IDT’s are shown. The first is the

charge accumulation on grounded guard fingers located

close to the IDT end, resulting in unwanted end radiation.

The seeond is acoustic end reflections in split-finger IDT’s.

The third is the influence of the metal ground plane on the

charge distribution when the transducer is driven unbal-

anced to ground. Good agreement between computer sim-

ulations and experimental results is achieved.
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